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1.0 Introduction

With the growth.of digital space communication in
the past decade, the introduction of sophisticated coding
techniques has provided efficiency improvements which have
resulted in reductions of required power or extended com-
munication range for numerous space missions. While early
coding applications were for relatively low data rates,
recent emphasis has been on real-time decoders capable of
operation at data rates above 1 Mbps and even approaching
100 Mbps. These efforts have resulted in the development
of high speed decoders which provide on the order of 4 to
6 dB of coding gain depending on the data rate, code rate

or bandwidth expansion, and error probability requirements.

The left half of Tablel.0.1 summarizes the present
state of efficiency improvement available with high speed
decoders‘presently in operation or under development.

The required ratio of bit-energy-to-noise-density, Eb/No,
is given in each case for bit error probabilities of

-4 7%

10°° and 10 ' .

When the data speed requirements are reduced to the
levels of deep space applications, which are on the order
of from 1 Kbps to 100 Kbps, greater coding gains can be
achieved. At these reduced speeds, sequential decoding

particularly can be shown to operate more efficiently.

*Only convolutional codes are considered here. Block codes
which were common in early appiications are so definitely
inferior both in required complexity and in resulting per-
formance that their further treatment is not worthwhile for
the systems under consideration, other than as outer codes
in a concatenated coding system.

-1-
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A hard quantized high speed sequential decoder can be
operated with about 1 dB less Eb/No' because of the in-
creased number of computations per bit period. Further
performance can be gained at lower speeds by using soft
‘8 or more level) quantization and thus regaining most
of the 2 dB loss inherent in hard (2 level) quantization.
Also,more efficient Viterbi decoders are possible at re-
duced data rates, although the improvement in this case

is not as great.

The potential performance of low rate decoders is
shown in the middle columns of Table 1.0.1l. For the se-
quential decoder, we consider a code-rate 1/3 system.
Assuming a computation speed of 1 Megacomputations/second
on soft decision data, a 64 K bit buffer, and a 500 bit
block length with frame resynchronization, we find an
improvement of about 2.3 dB relative to the hard decision,
code-rate 1/2, high speed sequential decoder operating
at 40 Mbps. The improvement is about 1 dB less if both
are operating at 100 Kbps. For the Viterbi decoder, we
consider a constraint-length 8, code-rate 1/3 decoder which is

considerably less complex than the low rate sequential decoder.

Its performance is equivalent or better for bit error

rates above 104

, but it becomes progressively worse at
low error rates. Improvements in either system through
increased complexity (larger buffer and higher computation

speed with ECL logic for the sequential decoder - higher

-3-



constraint lengths with greatly increased path and metric
memory requirements for the Viteroi decoder) are very

costly and could gain on the order of 0.5 dB.

A more promising approach at low data rates is the
use of concatenated or hybrid coding and decoding tech-
niques. This study deals with the performance and imple-
mentation of two particularly promising techniges, shown
in the right-hand part of Table 1.0.1l. Each is based es-
sentially on one of the decoders just discussed, augmented
by an additional device (block decoder for the concatenated
system - control logic and additional metric calculiators
for the hybrid system) whose complexity is not greater
than that of the original decoders. Yet the resulting im-
provement is much greater than would be possible if the
original deccders were simply upgraded by increasing

the complexity or speed in the manners discussed above.

Some of the conclusions are summarized in the two
rightmost columns of Table 1.0.1l. The performance of the
two systems are remarkably similar and the required buffer
sizes are approximately the same. The concatenated approach
appears to require about one third fewer IC's, and these
are of the TTL rather than of the MSI ECL logic family.

The latter are required by the hybrid system because of
the high required speed factor of the sequential decoder.
These advantages are partially offset by the fact that the
concatenated system requires several read-only memory (ROM)
and random-access memory (RAM) chips which are relatively

expensive. -4~



Otherwise, it actually appears that the concatenated
system is prefecable and that it is even cost-competitive
with a simple sequential decoder, while achieving approxi-
mately a 1 dB performance gain on the latter. All the
systems in the three rightmost columns require approximately
the same buffer size. 1In only two respects the concatenated
system may be inferior to the other two: namely, while the
sequential decoder generally requiree about a 30 bit syn-
chronization sequence (tail) for approximately every 500
data bits, and the hybrid bootstrap decoder requires about
a 164 bit synchronization sequence for approximately every
3000 bits, the concatenated decoder in the preferred form
requires a 4096 bit non-data sequence (consisting primarily
of outer code parity checks) every 28,672 data bits. These
long gapé in the data stream may not be significantly dis-
turbing when many users are time-division multiplexed to-
gether, but may represent a serious drawback when only one
data stream is sent. This problem can almost certainly be
alleviated by using a staggered interleaving scheme.
Unfortunately, this requires the simultaneous (though still
serial) decoding of several outer code words, A secondary
and corollary effect is that the decoding delay in the con-
catenated system is of the order of 32 to 64 Kbits, while
for the sequential and hybrid sequential systems, it is
only on the order of the 64K of buffer storage which cor-

responds only to about 7000 bits.

-5-



Finaily, it should be noted that an ideal rate 1/3
eight-level soft decision coded system operating at channel
capacity requires a bit energy-to-noise density of -0.3 dB.
This means that the two systems under consideration are
operating at ak~ut 2.5 dB from the ultimate capacity (or
Shannon limit) of the coding format. Thus, it appears
-7

from Table 1.0 that at Pb = 10

of ultimate coding gain between the uncoded system and the

, there are almost 12 dB

ideal coded system operating at channel capacity. With the
first level of sophistication (leftmost third) involving
coding with rate 1/2 codes, which may operate up to multi-
megabit data rates, almost half this gain is achievable.
With the second level of sophistication (middle third) in-
volving code rate 1/3 lower data rates, longer codes for
Viterbi decoding, and soft rather than hard decision
sequential decoding, an additional 1 to 2 dB are gained.
Beyond this, the third level of sophistication under con-
sideration here gains another 1.5 to 2 dB at Pb = 10-7.
Thus, obviously another such step-function increase is just
not possible. Experience in this study and previously has
convinced us of the futility and frustration in further
attempts in reducing’the small gap left in achievable
coding gain. The next "breakthrough," if it ever occurs,
might be worth another 0.5 dB. As will be discussed in

Section 4.0, we conclude that, on the basis of present

theory and technology, the concatenated or hybrid coding



systems under consideration can be realized in a cost-
effective manner and are certain to stand as the ultimate
in coding gain for space communication systems far into

the foreseeable future.

This final report is organized as follows. 1In
Section 2 we treat concatenated coding and decoding, be-
ginning with a review of the principles of operation and
a detailed analysis of performance with various configur-
ations. We then consider several possible implementations
and concentrate on a detailed evaluation of the preferred
hardware implementation. In Section 3, we proceed in the
same way for hybrid coding and decoding. Section 4 presents

our conclusions and recommendations.



2.0 Concatenated Coéi1~ and Decoding

The principle of concatenated coding and decoding as
a means of reducing the number of errors in received data
in tvo or more successive stages began with Elias' iterative
coding procedures (Ref. 1l). They were extended for block
codes by numerous researchers, the most complete study being
that of Forney (Ref. 2). Pinsker first (Ref. 3) and later
Stiglitz (Ref. 4) considered concatenation of convolutional
and block ccdes, using a block code as the inner (first stage)
code in an attempt to improve the channel, so as to increase

the computational cutoff rate Rco for the sequential de-

mp
coder operating on the outer (second stage) code. While

this produced interesting theoretical results, it requires

a very complex and impractical inner decoder. A much more
reasonable approach is to use the more efficient aﬁd power-
ful code - the convolutional code - internally and thus, for
a given complexity, improve the channel as much as possible
for the outer decoder. While the outer decoder may also be
convolutional, the resulting "super channel" consisting of
the original channel with inner coder and decoder seems
especially well suited to a particular class of block codes
over a multiple alphabet discovered by Reed and Solomon

(Ref. 5). This technique used with Viterbi decoding was
investigated by Odenwalder (Ref. 6) and found to yield rather

impressive results. In the remainder of this section, we

concentrate on this appr.act



2.1 Operation

The basic block diagram is shown in Figure 2.1.1.
The inner coder-decoder is a short constraint length convo-
lutional coder with a Viterbi (maximum likelihood) decoder.
Typically this decoder is operated at an Eb/No level suffi-
cient to produce a bit error probability in the range

2>Pb>10.3. The outer code is a high rate (low redun-

10
dancy) block code which then reduces the final block,

and consequently bit, error probability to the Gesired
level. The most efficient class of codes found for this
purpose are the Reed-Solomon (R-S) codes with a block length
of 2J—l symbols over a 2J—ary alapnabet, where the best
choice of J appears to be approximately equal to the con-
straint length of the inner coder. The interleaving buf-
fers are required because the inner decoder errors tend to
occur in bursts, which occasionally are as long as several
constraint lengths. While the outer decoder is undisturbed
by burst errors within a given 2J-ary symbol (which corres-
ponds to J bits or about one constraint length), its per-
formance is severely degraded by highly correlated errors

among several successive symbols; hence the need for inter-

leaving.
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2.2 Performance

To evaluate the performance of this concatenated
coding system under cost and complexity constraints, the
significant parameters of the inner code are the R-S symbol
error probability and the distribution of lengths of con-
secutive R-S syrol errors, the latter being required to

determine tre required interleaver dimensions.

Both experimentally and theoretically a more d4di-
rectly derived indication of inner code performance is the
distribution c¢f error lengths in bits. The length of an
error-burst for a convolutional code of constraint length K
is naturally defined as the number of bits starting with
the initial error and terminating when K-1 consecutive
correct bits have been received. Let this distribution
of bit error burst lengths be denoteéd L -

Qk = Pr (at any node an error-burst of length k
terminates) (2.2.1)

We desire to determine the distribution of lengths of con-
secutive R-S symbol errors, Pj' from the bit error burst

distribution Qk'

To determine Pj we must recognize, first of all,
that the error burcts on thz inner convolutional code are
totally asynchronous to the outer code symbol phase.
Suppose then that the first incorrect R-S symbol begins

m bits prior to the start of the convolutional code bit

-11-



rror burst. Because of ‘he asynchronous nature of the
situation, m is a uniformly distributed random variable
on the interval 0 <m < J - 1. Now conditioning on a

fixed m we have

jJ-m

Pj (m) = E Qk e J

k=(j-1)J-m+l

1, 2, ... (2.2.2)

and we define
Qk =0 for k < 0

Summing on the variable m, we have therefore,

J-1 J-1 jJI-m
Pj = E Pj(m) = E E Qk ’ j=l'2 ¢ o0
m=0 m=0 k=(j-1)J-m+l

(2.2.3)
If J > K-1, this expression is exact since every subsequence
of J bits must contain at least one error and hence cause the
R-S symbol to be in error. On the other hand, if J < K-1,
some R-S symbol in the sequence may possibly be correct, so
that (2.2.3) becomes an over estimate at the high end of the

distribution.

To obtain the R-S symbcl error probability from the
error length distribution, we need to weigh Pj by the number
of errors in each case. Since, as pointed out above, we take

all consecutive symbols to be in error, we have for the symbol

-l2~



error probability

I, = E ij (2.2.4)

J=1

Also from (2.2.3) we can obtain the desired interleaving length.
For example, if we require that the ultimate (outer code)
error probability be Pb' then we should take the interleaver

length L in R-S symbols to be such that

Py < Py (2.2.5)

Finally, assuming a long enough interleaver so that
we can neglect error dependencies, the output bit error
probability can be bounded as fnllows. For an E-error-
correcting R-S outer code, a R-S block error occurs when
more than E symbol errors occur in the block. When this
happens, the R-S decoder indicates that at most E symbols
are in error. So, if the superchannel causes E+i,

1l <ic< 27 -1 - E, symbol errors in the block, at most
2E + i symbol errors will result. Thus, the concatenated

code symbol probability of error can be upper bounded by

J
2Y-1\) . J_i_s
P, < z (i+E)( i ) I (1-118)2 "7l (2.2.6)

=13~



Since some of the bits in an incorrect symbol may be
correct, the bit probability of error is less than or equal
to the symbol probability of error. The symbol errors cauéed
by the R-S decoder will have about half their bits in error,
while those caused by the superchannel will typically have
from .25 to .40 of their bits in error, depending cn the
particular inner code and channel. Here we will simply upper
bound the bit probability of error by the symbol probability

of error. Thus,

J

Z . 2" -1 i 27 =-1-1
Pb < (1+E)( s ) Hs (1-ns) (2.2.7)
i=E+1

To cover the data rates of interest and to provide
the performance data needed to optimize this system for
various complexity constraints, the following inner codes

were simulated.

1) K=7, R=]1/2 with code generators 1111001
1011011
2) K=8, R=1/2 with code generators 11111001
10100111
3) K=8, R=1/3 with code generators 11110111
11011001
10010101
4) K=8, R=1/7 with code generators 11111001
10100111
11110111
11011001
10010101
10011111
11100101

-14-



The code generators in Cases 1, 2, and 3 are those
obtained by Odenwalder in Reference 6. These code gener-
ators were chosen to minimize the bit probability of error
at large Eb/No ratios. However, in the range of Eb/No's

used here other codes could yield better results.

The code generators in Case 4 were obtained using the |
code generators of Odenwalder's rate 1/3 code, his rate 1/2
code, and the reciprocals of his rate 1/2 code. In this case,
this yields a code with a free distance of 38, which is close
to the upper bound of 40 which Heller (Reference 7) has ob-

tained on the free distance of K=8, R=1/7 codes.

These simulations were for convolutional coding sys-
tems with practically implementable Viterbi decoders
(Reference 8) using 8 levels of receiver gquantization and
a path leﬁgth memory of 32 bits. The bit error burst length
statistics were computed and equations 2.2.3 through 2.2.7
were used to compute the R-S symbol probability of error,
the distribution of lengths of consecutive R-S symbol

errors, and the bit probability of error bound.

Figures 2.2.1 through 2.2.4 give the concatenated
code bit probability of error bound for a K=7, R=1/2 con-
volutional code and 6, 7, 8, and 9 bits per R-S symbol,
respectively. They show that for a fixed alphabet size

and probability of error, there is an optimum number

-]15-
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of correctable errors. That is, if the outer code is designed
to correct too many errors, the inner code Eb/No decrease, and
thus the superchannel symbol probability of error increase,
more than offsets the large error correcting ability of the
outer code. These curves also show in some cases that it

may be desirable to design the outer decoder to correct less
than the optimum number of correctable errors. Such a sys-
tem would require a larger Eb/NO ratio to achieve a specified
probability of error, but the decoder would be faster and

easier to implement.

Figures 2.2.5 through 2.2.8 summarize the performance
of this concatenated coding system for the four convolutional
inner codes, various alphabet sizes, and near optimum outer

code error correcting ability.
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2.3 Implementation Procedure

At data rates up to 100 Kbps, hardware implementation
of constraint length 7 and 8 Viterbi decoders is relatively
straightforward. LINKABIT has implemented a K=7, R=1/2
Viterbi decoder* using only 85 IC's and the implementation of
K=8 Viterbi decoders is documented in References 8 and 9.

So most of the system design here is concerned with the outer
coder-decoder and the interleaving buffers. For the present
purpose, the inner coder-decoder can be regarded as part of
the channel. The inner code rate and constraint length have
virtually no effect on the outer code design, except to the
small extent that longer constraint lengths cause longer er-

ror bursts and hence require longer interleaving.

The basic outer code parameters are summarized in
the code étructure diagram of Figure 2.3.1. Each of the I
rows in this array represents a R-S code word of 2J-l, J-bit
symbols followed by a J-bit segment of a synchronization
sequence. This assumes, of course, that the data to be trans-
mitted can be interrupted periodically for the insertion of
the (2E+1)JI parity and synchronization bits. This will be
the case, for example, when several users are time-division
multiplexed together. I is the degree of interleaving,
chosen sufficiently long to ensure the independence of suc-
cessive horizontal R-S symbols, E is the guaranteed number

of correctable R-S symbol errors, and 2E is the required

* It is estimated that a K=8, R=1/3 Viterbi decoder can be
implemented for data rates up to 100 Kbps with 150 TTL IC's.
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number of parity checks. It is assumed that the data is
presented to the encoder in blocks of IJ(2J—1-2E) information
bits followed by a period where the 2EIJ parity bits and

the IJ-bit synchronization sequence can be inserted. The
encoded bits are read out of the array in blocks of J bits
(one R-S symbol) one column at a time and fed to the inner

convolutional encoder.

Code synchronization is obtained using the IJ-bit
synchronization sequence of Figure 2.3.1 and the synchron-
ization ability of the Viterbi decoder. The Viterbi decoder
provides inner code node synchronization and phase ambiguity
resolution as described in Reference 8. Then the IJ-bit
sequence of superchannel symbols is used to obtain code
array, and thus R-S symbol, synchronization. However, due
to the bursty nature of the superchannel, several code ar-
rays may have to be examinel to obtain the code array syn-

chronization.

2.3.1 Encoder and Interleaver Design

The encoding and interleaving operations can be
accomplished as shown symbolically in Figure 2.3.2. This
basic encoder is the most efficient for a cyclic code with
2E parity checks when 2E<2J-1-2E (see Figure 6.5.5 of
Reference 10). The double lines represent J-bit signal
flow and the additions and multiplications are over GF(ZJ).

The generator polynomial is

D2E—l

g(D) = 9oty D+ «ve +950 4 (2.3.1)
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where the coefficients, g;r are from GF(ZJ). In particular,

if the field is generated by a primitive element o and «,

az, a3, ooy a2E are roots of the code word polynomial, then
2E
g(D) = N (D-a%) (2.3.2)
i=1

We will restrict our attention to this class of R-S codes

throughout this report.

In an actual implementation the input and output
are a sequence of binary symbols, so a serial-to-parallel
coperation must be performed at the input to the parity
computation section and a parallel-to-serial operation
must be performed before the outputs are fed to the con-
volutional encoder. A description of a hardware imple-
mentation. of the encoder and interleaver is given in a
later section. The important point is that the entire
code array of Figure 2.3.1 does not have to be stored,

only the 2EIJ parity bits need to be stored.

2.3.2 Unscrambler and Decoder Storage Implementation

The major storage requirement in this concatenated
coding scheme is in the receiver unscrambler where the
sequence of received R-S symbols must be grouped into R-S
words and the decoded R-S symbols must be arranged so that
they are presented to the data sink in the proper sequence.
Figure 2.3.3 illustrates a method of implementing this un-

scrambling operation. This implementation operates as follows.
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The first received symbol gues to the first register in the

upper set of registers, the second rece.ved symbol to the

second register, etc., until the Ith

Ith register. Then the (I+l)th symbol is shifted into the

symbol is stored in thr

first register and the procedure is continued until the
registers are filled. Referring to the code array cf
figure 2.3.1, it can be seen that this procedure puts the
first I R-S words in the upper I registers. When these
registers are filled, all of the switches are changel to
their other position and the input symbols are shifted intc
the lower set of registers. Meanwhile the words in the
unper register are shifted into the R-S decoder in the
end-around manner shown and the corrected symbols are shif’'ed
back into the Ith register. After all the shifts heve been
completed, these registers contain a corrected version of.
the original I words. Then when the lower registers are
filled, the positions of the switches are changed again and
the words in the lower registers are shifted through the
R-S decoder. The inccming symbols are shifted into the
upper registers and the symbols shifted cut are the decoded

properly sequenced symbols.

This implementation has the advantage that the R-S
decoder is independent c¢f the interleaver. Other interleaving
procedures could reduce the storage nearly by half, but at the
cost of more complex control and staggered access to the R-S
decoder. Investigation of these procedures has shown them

to be less cost effective than the present one.
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2.3.3 Reed-Solomon Pecoding Procedure

A R-S decoder can be implemented in four steps:

l. Calculate the syndromes from the received
sequence.

2. Use the Berlekamp Algerithm to find the errorx
locator polynomial o (D).

3. Use a Chien Search to find the roots and hence
the location of the errors.

4. Find the values of the errors.

The received word from the cutput of the inner

decoder will be denoted

279-2
y(D) = E y, D" (2.3.3)
n=0
' . oJ .th . <
where y 3 1<i<2" -1, represents the 1 received symbol.

2 -l-i '3

If a s a primitive element which generates the field, then

the syadromes can be calculated by

s, = y(al+i)

1
1+i 14i 1+i
( ..o (yN_la l+yN_2) o l+yN__3)oz .. .+y0)

0<i<2E-1

(2.3.4)

where N is the syvmbol block length of 2J-1. Thus each syn-
drome can ke calculated by adding each successive received

R-5 symbol into an initially empty register, multiplying
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the sum by al+l

, and returning the result to the register
awaiting the next received symbol. Figure 2.3.4 illustrates

this procedure for the i-th syndrone.

The Berlekamp Iterative Algorithm for computing the
error locator polynomial, o(D), from the syndromes is well
documented by Berlekamp (Reference 1l1) and Massey (Refer-
ence 12). This algorithm is equivalent to synthesizing the
minimum length shift register, over GF(ZJ), to generate

S The resulting tap coefficients are the

o f 4 LI I SzE-lo
coefficients of the error locator polynomial. We will use
the notation and follow the block diagram given in Refer-

ence 10, Figure 6.7.4.

The Chien search determines whether a given symbol
is in error by evaluating the polynomial

o(D) = 1+olD+...+0_DE (2.3.5)

E

at all inverse values of the primitive field element «.

If
E #0, tgﬁre is no error in the
[ =N} _ -n\i n symbol.
ofa™") = 1470, (67
i=1 =0, there is an error in the
nth symbol.

1, 2, ..., 29-1-2E

=
n

This search can be implemented as shswn in Figure 6.7.5 of

Reference 10.
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Figure 2.3.4 Procedure for calculating the ith Syndrome.
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After the error locations have been located with
the Chien search, the error values must be calculated.
If less than or equal to E errors have occurred, the error

values are given by the formula (Reference 10)

A(a_n)
Vn = -, =N ¢ D=3, Nop o-ey N
g (a )
(2.3.6)
where ni is the location of the i-th error
- if E odd
) 2 4 F-1 here F= E, if
¢' (D) = °}+°3D +0gD *...+0pD v E-1l if E even
(2.3.7)

and

' 2
A(D) = [S (D)U(D)]g-l =So + (So°1+sl)D+(5002+8101+52)D

- - E-1



2.4 Part Software and Part Hardware Decoder Implementation

Several parts of the concatenated decoder are ideally
suited to hardware implementation. As noted previously, the
hardware implementation of constraint length 7 and 8 Viterbi
decoders is relatively straightforward at speeds of less than
100 Kbps. Also, the unscrambler of Figure 2.3.3 can be easily
implemented in hardware, but it would require a large amount
of storage to implement in software. So these operations

should clearly be done in hardware.

The R-S decoder can be efficiently implemented entirely
in hardware or in part hardware and part software. The most
efficient implementation will depend on the required speed and

the code parameters.

Since the performance curves indicate that high rate
R-S codes should be used, the slowest parts of the R-S decod-
ing are steps 1 and 3 which have to be performed for each re-
ceived symboi. This indicates that these steps should be per-
fomred in hardware. However, the interfacing problem in going
from a software step 2 to a hardware step 3 and then back to
a software step 4 may make it desirable to perform step 3 in

software also.

To estimate the speeds of these three steps in the R-S
decoder, we wrote a computer program to perform these steps.
One of the problems in writing such a program is to find
efficient ways of storing, adding, and multiplying field ele-

ments. Field elements over GF(ZJ) can be represented as

-36-



powers of a primitive field element a or as (J-1)- degree
polynomials over GF(Z); In this program we represented the
field elements by J-bit integers with the bits corresponding
to the coefficients in their polynomial representation. Field

addition is accomplished with a bit-by-bit exclusive-OR operation.

Field multiplication and division are performed using
field log and anti-log tables. The log table lists the corres-
ponding power of a for the integer representations of the
2J—l non-zero field elements and the anti-log table lists the
integer field element reprcsentations for the powers of «a.

With these tables multiplication/division of two non-zero field
elements is accomplished by adding/subtracting their 1logs

modulo (ZJ-l) and looking up the resultant in the anti-log table.

Appendix A gives a listing of a Fortran and an assembly
language version of this program. The decoding speeds of the
various steps in the assembly language program are given in

Table 2.4.1 for two sets of R-S code parameters.

These times are for the LINKABIT, Digital Scientific
META-4 Computer with a one microsecond core memory cycle.
Each time is based on the time to decode three arbitrarily
chosen sets of E error locations and values. For the cases
timed there was less than a 3% variation in these times.

Table 2.4.1 lists the largest of the three times.

This table shows that, at least for the two R-S

decoders timed, a serial software implementation of steps

-37-
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2, 3, and 4 is too slow. If the Chien search (step 3) is
performed in hardware and two minicomputers are used for
steps 2 and 4, the decoding speed is limited by the speed

of the Berlekamp Algorithm (step 2). Table 2.4.1 indicates
that such an implementation would be satisfactory with lower
speed requirements or for codes with smaller guaranteed

error-correcting abilities.

This program could be speeded up by perhaps as much
as a factor of 10 by using micro-programming techniques.
If this were done, steps 2, 3, and 4 of the Berlekamp
Algorithm could probably be serially implemented at up to
100 Kbps for the 27-symbol 8-error-correcting code. How-
ever, a hardware implementation appears desirable for the

more powerful 28-symbol l6-error-correcting code.

-39~



2.5 Hardware Implementation

The present discussion on the hardware implementation
will be limited to a system with a 28—symbol* lé-error-correc-
ting R-S code and an interleaver length of 16. In section 2.2
it was shown that for this alphabet size and desired range of
error probabilities, 16 is the optimum number of correctable

errors. The computer simulation also showed that in this case

an interleaving length of 16 was sufficient for probabilities
of error down to 10-%. Here we will show that this system can
be hardware implemented at a reasonable cost. The design
principles are the same for systems with different high rate,

low speed R-S decoders.

First, we discuss the hardware implementation of some
of the basic field operations. Then we present an outline
of a hardﬁare implementation with an estimate of the number
of integrated circuit chips required to accomplish the opera-

tions.

2.5.1 Hardware Implementation of Field Operations

As in the software implementation, let the GF(28) field
elements be represented by polynomials of degree less than

8 in a. That is, a field element Y is represented as

* This is a particularly convenient field size since then
the field elements can be stored in 8-bit shift regis-
ters.



Y = : v, o (2.5.1)
i=0 |

where the Yi coefficients are binary numbers. Also, in

order to obtain specific circuits for performing field

multiplication, let the GF(28) field be generated by a

field element o with a primitive polynomial
M(p) = 1+ p? +D®+ D"+ D® (2.5.2)

The only criterion used in selecting this primitive poly-
nomial is that it have minimum weight which in this case

is 5.

One method of multiplying two non-zero field elements
is to look up their logarithms in a log table, add the logs
modulo 255, and look up the result in an anti-log table.
Each log and anti-log table look-up can be implemented
with a 256 x 8 read-only memory (ROM) and the addition can
be implemented wi*h two chips. 1In general, to multiply two
arbitrary field elements a test would have to be made to
determine if either were zero and, if this were the case,
the output would be set to zero. Thus, excluding control

circuitry, 7 chips are required*.

*This is reduced when a variable element is multiplied by a
fixed element (such as in polynomial evaluation where the
fixed element is a polynomial coefficient) since then we can
simply store the logarithm of the fixed element rather than
the element itself, thus avoiding one ROM, and if the fixed
element is non~-zero, one zero test chip.
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Another method (Reference 1ll) of multiplying two
field elements, U and V, is illustrated in Figure 2.5.1.
Initially the two field elements to be multiplied are stored
in the U and V registers and the 2 register is set to zero.
The U register is wired to multiply by o, the V register is
a storage register which can be shifted to the right, and
Z is an accumulator register. The multiplier operates as
follows. Depending on the lowest bit of V, U is either
added or not added into Z. Then the U and V registers are
shifted and ths process is repeated. After 8 steps Z con-

tains Vi(U at) » the desired product.
1=

Figure 2.5.2 gives an implementation of this field
multiplication procedure. In this and the proceeding imple-
mentation diagrams, L denotes low, H high, and X irrelevant.
Excluding control circuitry, this implementation requires 8
chips. However, the chips required here are less costly

than those in the previous implementation.

The best way of obtaining the inverse of a field ele-
ment is to look up the answer in a table containing the 28-1

inverses. This can be implemented with one 256 x 8 ROM.

-4 2=
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2.5.2 Hardware Encoder and Interleaver Design

In section 2.3.1 we described the general procedure
for implementing the encoder and interleaver. Figure 2.5.3
gives an outline of a hardware implementation of this pro-
cedure. Random-access memories (RAM's) provide the parity
symbol storage and a read-only memory (ROM) provides the
storage for the logs of the generator polynomial coefficients.
The main difference between this implementation and the pro-
cedure shown in Figure 2.3.2 is that here the multiplications
are performed in series instead of in parallel as indicated
in Section 2.3.1. That is, for each input symbol, 32 cycles
through this circuitry are required to update all of the
parity symbols for that R-S word. Then the RAM selects the
next set of 32 parity symbols and the same procedu-e is re-
peated for the next input symbol. This serial computation
procedure, of course, takes longer than the parallel procedure,
but it is fast enough to obtain the required coding speeds

and it has far fewer parts.

Above each block in this diagram is an estimate of
the number of TTL chips required to accomplish the operation.
The composite RAM shown requires fcur 1024 x 1 RAM chips and
must be clocked twice to obtain the desired 8-bit outout.

The field multiplication is perfnrmed using the logarithmic
procedure described in the previous section. Howcver, the
complexity of this multiplier is reduced a little by stor-
ing the logarithms of the 95 coefficients instead of their

polynomial representations. If any coefficient is zero,
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the value 255 can be substituted since the largest logarithm
is 254. The dotted lines indicate that if either multiplier

input is zero, the output is zero.

This diagram does not include the control or synchroni-
zation circuitry. It is estimated that 8 and 4 chips, respec-

tively, are required to accomplish these operations.
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2.5.3 Synchronization Implementation

As described in Section 2.3, the Viterbi decoder
provides inner code synchronization and phase ambiguity

128 bit sequence, consisting of

resolution and the IJ
16 superchannel symbols, is used to obtain block code array
synchronization. At the moderate data rates required here,
the code array synchronization can be implemented with a
simple correlation detector. That is, for each received
superéhannel bit the detector correlates the 128-bit re-
ceived sequence, terminating at that bit, with a locally
generated copy of the synchronization sequence and compares
the output with a threshold to determine the starting bit

of the code array. The most recent 128 superchannel bits
can be stored in a RAM, the synchronization sequence can

be gei.erated with 2 chips, and the correlator, consisting

of an exclusive-OR circuit and a counter, can be implemented
with a little over 2 chips. Adding a few chips for control

circuits, a total of about 8 chips are required.

This, of course, requires that for each bit time
(> 10 usec.) the locally generated synchronization sequence
be shifted and modulo-2 added to the stored most recently
received 128 bits. Thus, the synchronization sequence nust
be shifted at a speed of up to 12.8 MHz, which is well within

the capabilities of the TTL logic.
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2.5.4 Hardware Unscrambler Implementation

For the J=8, I=16 system being considered, the un-

16_ 65,536 bits of

scrambler of Figure 2.3.3 requires 2
storage. The best way of implementing this is to use 16
4096 x 1 MOS RAM's. Dynamic MOS shift registers could also
be used, but they would have to be recirculated at the lower
data rates. Using the MOS RAM's, 16 chips are required for
the storage reguirements and it is estimated that an addi-
tional 14 chips are required for the control and rather
formidable addressing circuitry. Thus a total of 30 chips

~

are required.

2.5.5 Hardware Reed-Solomon Decoder Design

A sketch of the overall design of a R-S decoder is
shown in Figure 2.5.4. Typically the decoder will be com-
puting thé syndromes for one word while the remaining de-
coding steps are performed for the previous word. The
Chien searcher checks each symbol to see if an error has
occurred in the symbol about to be shifted out of the buffer.

If so, the error value is computed and the symbol is corrected.

A timing diagram of the R-S decoding oreration is given
in Figure 2.5.5. The lines in this figure indicate the rela-
tive amc".’.s of time and the sequence of operations in the

Reed-Solomon decoding procedure.
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2.5.5.1 Syndrome Calculation

As with the encoder implementation, the number of
chips required to implement the syndrome calculation can
be greatly reduced by using a serial instead of a parallel
implementation. Figure 2.5.6 shows a serial implementation
of this procedure. Referring to Figure 2.3.4, the counter
of Figure 2.5.6 generates the logs of the ai elements and
the lower RAM contains the storage for the syndromes being
calculated. During the period immediately following the
first received symbol of the word, the feedback is removed
and in 32 serial steps the first term of each of the syn-
dromes is written into the lower RAM. When the remaining
symbols in the word are received, the feedback is used to
modify the syndromes as shown in Figure 2.3.4. Again 32
steps per received symbol are required to modify all of the
syndromes. On the last series of modifications, i.e., after
the last symbol c¢f the word is received, the syndromes are
also stored in the upper RAM's for use in the other decoding

steps.

The estimated number of TTL chips required to implement

the various steps and the control circuits are shown.

2.5.5.2 Berlekamp Algorithm Implementation

Reference 10 provides a good description of the Berle-
kamp Iterative Algorithm. Basically the algorithm synthesizes
.he shortest length shift register which will generate the

syndrome sequence. The resulting tap connections are the
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coefficients of the error locator pclynomial. As described
in Reference 10 and illustrated in Figure 6.7.4 of Reference
10, at each iteration the algorithm computes the discrepancy,
dn’ between the next syndrome and the next output of the
present shift register. If this discrepancy is not zero,

a new set of tap connections is generated.

Figure 2.5.7 gives a simplified block diagram of the
algorithm and Figures 2.5.8 and 2.5.9 outline an implementa-

tion of the two main parts of this bloci diagram.

In Figure 2.5.8 the Rl RAM contains the present set
of shift register tap connectiocns and the dn r~yister accumu-

lates the terms of the next discrepancy as indicated.

The diagram of Figure 2.5.9 illustrates the cperation
of the main processor in the notation of Figure 6.7.4 of
Reference 10. At each iteration this processc: checks to see
if the next discrepancy is zero. If it is, this procersor
merely shifts the words in the R3 RAM one address location
and inserts a "0" symbol. If the next discrepancy is not
zero, a new set of shift register tap sequences must be
computed. This is accomplished by modifiying each of the
16 words in the RAM's as shown and then shifting the words
in the R3 RAM one address location and inserting a "0" or
a "1" symbol, depending on the polarity of n-22;_ Also if

dn#O and nzth,_ﬂn and d* must be updated as indicated.
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Figure 2.5.7. Berlekamp Algorithm Block Diagram.
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Figure 2.5.10 sketches an implementation of this
algorithm. This implementation uses the procedures out-
lined in Figures 2.5.8 and 2.5.9 and adds circuitry to

implement some of the other operations.

The dotted line from the dn=0 tester indicates
that when dn=0, control is shifted to the R3 RAM as des-
cribed in Figure 2.5.9. The other dotted lines indicate
that, as before, when a multiplier input is zero, the out-

put is set to zero.
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2.5.5.3 Chien Search and Error Evaluation Preparation

The Chien search and error evaluation preparation
step stores and, when necessary, computes the coefficients
of the A, 0, and ¢° polynomials suv *“hat they can be used
efficiently in the Chien search and error evaluation pro-
cedure. The coefficients of the o polyromial, o;, are com-
puted with the Berlekamp Algorithm and, as shown in Equation
2.3.7, the coefficients of the ¢° polynomial, o’i, are equal

to o for i even and zero otherwise. So this step merely

i+l
stores these coefficients so that they can be readily ac-

cessed by the Chien search and error evaluation circuits.

The coefficients of the A polynomial must be com-
puted. They can be computed directly from tuae formula
(2.3.8) or their calculation can be incorporated into the
Berlekamp.Algorithm (Reference 10). In this case, the
direct approach appears to be less complex to implement.
Figure 2.5.11 gives an outline of an implementation using
this approach. This implementation accumulates the sum
defining each coefficient in the temporary Ai storage

register and then stores the result in the Ai RAM.
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2.5.5.4 Chien Search and Frror FEvaluation

As described in section 2.3.3 the Chien search

determines whether a given symbol is in error by computing

o(a"?). If this quantity is nonzero, the nth symbol is
said to be correct. Otherwise an error of value A(a-n)/o‘(a-n)

is said to have occurred in that symbol.

Figure 2.5.12 gives an implementation of this pro-
cedure. This implementation performs the Chien search and
evaluates the A and ¢° polynomials in parallel, first for
n = N-1, then for n = N-2, and so forth, where N = ZJ-1=255.

In the first step the circuitry accumulates

15
- (N-1) _ i
o(a )—1+Z oi+10tot
i=9
15 .
A(a-(N_l)) = A, al
4 1
i=0
and 15 .
o,'(a-(N-'l)) - o.a al
4 i
i=0

in the o, A, and 0° storage registers, respectively. Then
the NOR gate checks to see if the first received symbol,
Yy-1s is correct. That is, it checks to see if o (o~ (N-1),
is nonzero. If so, the output AND gate produces a sequence

of 8 zero bits. If the NOR gate output is high, an error is
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indicated. 1In this case A(a_(N_l))/o'(a—(N—l)) is formed

as shown and this error sequence is selected as the output.
At the kth step this implementation evaluates the

o, A, and 0° polynomials at a-(N-k), checks to see if the

kth received s,mbol is in error, computes the value of

the error if there is one, and outputs an estimate of the

h

superchannel bit error sequence corresponding to the x*

received symbol.
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2.5.6 Hardware Implementation Summary

Table 2.5.1 summarizes the number of chips required
to hardware implement the various operations in this con-
catenated coding system. This table shcws that most of
this system can be implemented with TTL logic. MOS chips
are used only in the unscrambler and in the delay line
storage during R-S decoding, where large amounts of storage
are required. A total of 17, 4096 x 1 MOS RAM's are used

for these storage purposes.

The table shows that the decoder for this concatenated
coding system can be implemented with only a little over
twice the number of chips as the basic Viterbi decoder.

That is, it requires a few more chips than a K= 9, R = 1/3
Viterbi decoder. However, this concatenated :soding system
only requires 1.93 and 2.18 dB t+» achieve bit error prob-

4 and 10-7, respectively, while the K = 9,

abilities of 10~
R = 1/3 Viterbi decoder system requires awout 2.6 and 4.2 dB.
To obtain the same performance as this concatenated coding

system, a considerably longer and exponenti.lly more complex

Viterbi decoder system would be required.
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3.0 Hybrid Bootstrap Decoding

Performance results for hybrid bootstrap decoding‘16'17'18)

based on extensive simulations by iorman are presented in

two papers (Refs. 14, 15). The design considered in Section
3.2 follows these papers very closely, since alternate
schemes have not been adequately tested. We are particularly
interested in the rate 1/3, one group, soft-decision decoder
without multiple processing, which achieves performance com-
parable to that of concatenated coding. Performance is re-
viewed in Section 3.1 and an implementation based on MECL
10,000 logic is presented in Section 3.2. Suggestions and
comments on other approaches are contained in Section 3.3.

A careful comparison and evaluation of hybrid and concatenated

coding is contained in Section 4.

3.1 Performance Results

In hybrid decoding, the principal source of failure
is block erasure due to inadequate time to decode. Undetected
errors also occur. An undetected output bit error rate of
2.5 x 10~ near Roomp 1S Cited in Ref. 14 for the rate 1/2
code. It is anticipated, however, that with proper choice
of parameters and during operation at rates below Rcomp'
that is, with Eb/No of 1.5 dB or higher, the undetected error
rate will be significantly lower than 10'6 and not a signif-

icant cause of system degradation.
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An erasure occurs whenever the number of computations
required to deccde a block exceeds the number of computations
that can be performed by the decoder during the time allotted
for decoding the klock. In real-time decoding, this number
is approximately equal to the computational speed of the
decoder times the time required to transmit one block.
Buffering external to the decoder will permit additional
time ;o be devoted to difficult blocks, beyond that required
to transmit the block, but this effect is not major unless
very large buffers (and delays), or off-line processing,

is provided.

Fig.3.1l.1l is an extrapolation of the recults of Fig. 1
cf Ref. 15, the normalized computational distribution for a
rate 1/3, 7-track bootstrap decoder. These curves may be
used to épproximate system performance as follows. A de-
coder capable of performing D computations per second can

perform L, = D x 3000/R computations during the time re-

T
quired to transmit a block of 3000 bits at an information

bit rate of R bits per second. The normalized total number
of computations is obtained by dividing LT by the number of

information bits, yielding

U= LT/BOOO = D/R.

Thus, the normalized total number of computations per block
is just the computational speed factor, u, defined as the
ratio of the computational rate of the decoder to the infor-

mation bit rate. For a decoder capable of 15 megacomputations
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per second (MCPS)Ju = 150 at a rate of 100 Kbps and u = 1500
at a data rate of 10 Kbps. The curves of Fig.31l.l then indi-

cate an erasure rate of 7 x 10 °

at an Eb/No of approximately
2.2 dB at 100 Kbps and an erasure rate of 3 x 10'.4 at an

Eb/No of approximately 1.7 dB at 10 Kbps.

Curves of erasure vs.Eb/No at data rates of 10 and
100 Kbps assuming a 15 MCPS decoder are presented in Fig. 3.1.2.
It should be noted that these curves are based on rather un-
certain extrapolation and thus are subject to considerable
inaccuracy. The performance of a 16 error correcting con-
ca-enated Reed-Sclomon Viterbi decoder is also shown in
Fig.3,1.2as a curve of block error probability vs. Eb/No.
The hybrid decoder operating at 10 Kbps appears to have a
slight performance advantage down to block error or erasure
probabilities of 1077, At lower speed factors, hybrid de-
coding appears to suffer badly. In particular, at 100 Kbps,
hybrid decoding is quite inferior for block erasure proba-

bilities less than 10~ %.

The reason for this inferior performance is not clear.
Fig. 2 of Ref. 15 shows an unexplained decrease in Pareto
slope, o, for the rate 1/3 code as Eb/No is increased from
2 to 3 dB. It is this decrease that shows up as inferior
hybrid decoding performance at 100 Kbps above 2 dB. Whether
this is a basic problem, a quirk in the implementation, or

overly ambitious extrapolation remains to be explained.
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It is clear that there are significant advantages to
high speed factor. The design for a soft decision, rate 1/3
hybrid decoder is discussed in Section 3.2. A faster compu-

tation rate does not presently appear to be practical.

3.2 Hybrid Bootstrap Sequentia. Decoder Implementation

A design of a hybrid sequential deccder, using the
algorithm presented in Ref. 14, is described in this section.
A block diagram of the decoder is shown in Fig. 3.2.1l. When
the decoder completes the decoding of a block, the réceived
symbols for the next block are loaded into the decoder memory
while the decoded data from the previous block is being read
out. Simultaneous with received symbols being loaded, the

state track is generated and loaded into the decoder memory.

Three state bits are generated from the received
symbols for each of the 512 words in the block. The state
bits are computed as foliows: the first state bit of word n
is equal to the even parity of the sign bits of received
symbol one for each of the seven tracks in word n; the second
state bit is equal to the even parity of the sign bits for
received symbol two, etc. Three more state bits in word n
are the binary representation of KLEFT, the number of tracks
that have not yet decoded past word n. When the memory is
first loaded, KLEFT is set equal to seven in all 512 words.
The final bit of the state, referred to as the alternate
branch state bit, is particular to the track presently

being decoded and is set equal to one on a forward move
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along the best branch from a node, and to 0 on a forward

move on the alternate branch.

3.2.1 Decoder Memory Organization

A total memory size of 512 words is required. The
total memory is divided into three sections; one for re-
ceived symbol storage, one for information bit storage, and
one for decoder state storage. The received symbol and the
information bit sections are divided into seven independent
tracks. Each track has its own address counter. The re-
ceived symbol and information bit storage for a given track
share the same address counter. The state memory is ad-
dressed by an address counter which is loaded from the

track address counter of the track currently being decoded.

The received symbol storage requires a nine-bit word
for each track for a total of 512 x 7 x 9 = 32,256 bits of
storage. The information bit storage requires only one bit
per track for a total of 512 x 7 = 3,584 bits. The state
memory has only a single track. A seven-bit word is re-
quired for a total of 3,584 bits., Thus, the total storage
required is 39,424 bits. Thwe 2ycle time must be approxi-
mately 50-60 ns., It appeaxrs that these requirements can
best be met with the Faircnild 95410, 256-bit ECL memory.

A total of 154 of these devices are required to build this

memory.
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While the decoder is computing the present node,
the memory reads out the received symbols and state bits
for the next computation. Since the decoder may move either
forward or backward, the received sympols and state bits
for both the next node and the previous node must be pro-

vided.

3.2.2 Decoding Logic

Since the decoding logic speed determines the
overall computation rate, it has been worked out in some
detail. A block diagram of the decoding logic is shown
in Fig. 3.2.2. The decoding logic has two modes, the look-
forward mode and the look-back mode. The decoder is in the
look-forward mode if the present node was arrived at by a
forward step. Otherwise, the decoder is in the look-back

mode.

The node metric, or MT, register contains the cumula-
tive metric minus the cumulative threshold for t':e present
node., A 16-bit register for use with symbol metric values
quantized to 12 bits is assumed, based on simulations performed
by L. Hofman and summarized in Fig. 3.2.3. The 2 curves en-
compass a range of choices of metric quantization and of KLEFT,
Hofman notes that, by extrapolation, a 1l6-bit MT register can

33 blocks,

be expected to overflow about once every 5 x 10
whereas a 14-bit register could be expected to overflow every

5 x 10 blocks when used with 12-bit symbol metrics. The
choice of 16 bits thus appears to be reasonable. Symbol metric

quantization is discussed in connection with Fig. 3.2.4.
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The MT register is set to zerc when starting or
resuming the decPding of a track. When in the forward
mode, the metric calculator simultaneously computes the
metric for the two successor nodes to the present node
by adding the three symbol metrics for each branch to MT.
The best of the two metrics is tested for threshold vio-
lation (negative value of MT). If threshold is violated,
the decoder steps back to the previous mode. Otherwise,
the decoder steps forward, sets the alternate branch state
bit to 1, and tests the best metric for a possible threshold
tightening. The metric MT is decreased by A if the previous
metric was less than A and the best new metric is greater
than or equal to A. The resulting metric is then stored
in the metric register and the decoder steps forward on the

best branch.

In the back-up mode, the metric of the present
branch and the alternate Eranch is calculated simultaneously.
If the present metric is below threshold, then the threshold
is loosened by adding A to MT and the decoder steps forward
on the bésé branch. If this is not the case, and if the
alternate branch available state bit is 1, then the metric
of the alternate branch is tested for threshold violation.
If the alternate branch metric is above threshold, then the
decoder steps forward t» the alternate branch, setting the
alternate branch -available state bit to 0; otherwise, the

decoder steps back.



The branch metrics are computed from the symbel
metrics and the previous node metric. The only practical
way of generating the symbol metrics is by storing the
values in three identical look-up tables, one for each
symbol. Each look-up table is composed of six 256-bit
MECL 10,000 ROM's and is addressed by three bits. These
devices (soon to become available) will have access times
of about 17 nanoseconds. Each symbol look-up table provides
two sets of symbol metrics; one for the upper (0) branch and
one for the lowar (1) branch. Each symbol metric is stored
to 12-bit precision. 1Initial simulations by Hofman indicate
that with appropriate choice of KLEFT quantization to 2 bits,
metric table quantization to 12 bits has negligible impact
on computational requirements. A more extensive simulation
appears to be indicated, however, before parameter choices
are frozen. Hofman's results are presented in Fig. 3.2.4.
Although obtained for a rate 1/2 code, no differences are

anticipated for a rate 1/3 code.

In forward mode, the two branch metrics are formed
by summing the symbol metrics with the contents, MT, of the
node metric register. These two results are then subtracted
from each other to determine the larger of the two. Thresh-
old changes are obtained by adding or subtracting A from
both the upper and lower branch metr‘cs while they are

being compared.
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In the backward mode, the present node metric is
determined by subtracting the upper branch metric from MT,
The alternate node wetric is computed by adding the alter-

nate branch metric to the present node metric.

The appropriate metric is selected by a three input
multiplexer and stored as the new value of MT in the node
metric register. The decision which determines the best
metric also determines the information bit. The infor-
mation bits are shifited into an encoder which deterr .nes
the check bits for the next computation. After the infor-
mation bits shift through the encoder, they are stored in

the appropriate track of the information bit memory.

As the decoder moves forward, the state bits are
updated. " Each check bit from the encoder is exclusive-OR'd

with the sign bit of the corresponding received symbol.

The result is exclusive-OR'd with the corresponding state
parity bit and stored as the new state parity bit. At the
same time, the quantity, KLEFT, is decreased by one. When
backing up, KLEFT is increased by one and the state parity
bits are changed back to their original condition. The
alternate branch state bit is set to 1 or 0, depending on
whether the forward move is along the best or worst branch,

respectively.
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3.2.3 Track Control Logic

The function of the track control logic is to
monitor the performance of the decoder and to switch to
another track when the decoder bogs down on the present
track. The decoder's progress on the present track is
monitored by a counter which is incremented when the de-
coder threshold is loosened. The counter is reset to
zero when the decoder tightens threshold. The number in
this counter is continuously compared with a stopping
threshold, DSTOP. If the threshold is violated, then
the track control logic switches the decoder to the next

unfinished track.

The decoder's penetration is also monitored by an
up/down counter which is zeroed when decoding switches
to a new track. If, when the DSTOP threshold is violated,
the decoder has penetrated far enoug!. that progress has
been made, a regisfer, KROUND, is reset. Otherwise,

KROUND is incremented by one.

If KROUND becomes equal to the number of unfinished
tracks, then progress is no longer being made by any of
‘the unfinished tracks. 1In this case, the unfinished tracks
are restarted at the beginning of the block and the stop-

ping threshold, DSTOP, is loosened.

-84-



The stopping threshold, DSTOP, is a function of
KLEFT and DI, the number of times the unfinished tracks
have been initialized. The quantity, KLEFT, is stored in
the state memory. The quantity, DI, is the contents of a
2 bit counter, initially zero, which is incremented when-
ever alli unfinished tracks become stalled, as determined
from KROUND equaling KLEFT. The DI counter is reset
whenever a new track is finished. The stopping thresholds
are stored in 32 words of a single MECL 10,000 ROM ad-

dressed by KLEFT (3 bits) and DI (2 bits).

When the stopping threshold, DSTOP, is violated,
then the track control logic stops the decoding of the
present track and begins the decoding of a new track.

If KROUND equals KLEFT, all unfinished tracks are stalled
and all uncoded tracks are reinitialized. The simulations
of Ref. 14 and 15 assume restarting at the track origins.
However, some time and probably computations would be
saved if reinitialization were achieved by starting at a
point between the origin and the present node, that is,

by backing up a fixed distance after stalling.
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When switching to a new track, only those nodes
which lie ten nodes or more bchind the present node are
considered to be "definitely" decoded. Since the state
has been updated to the present node, the decoder is backed
up ten nodes, thusly restoring the state bits of non-
definitely decoded nodes to their previous values. To
provide correct information for the next restart, the
decoder is then forced forward 24 nodes, with all decoding
operétions suspended, thus storing the encoder contents

in the information bit memory.

Track change is then accomplished by incrementing
the 3 bit track pointer counter which selects the active
track. The track address counter of the new active track
is checked to see if this track is completely decoded.

If so, the track pointer counter is incremented until an’

unfinished track is found.

Decoding of this track is started by first loading
the encoder by forcing the decoder to back up 24 nodes.
The metric register and the progress counter are then re-
set to zero. The present node then forms a "pseudo origin"
for the subsequent decoding operations. This completes
the switching process and the decoder is allowed to pro-
ceed until the stopping threshold is violated again, or

until the track is completely decoded.

In the event that all unfinished tracks are stalled,
then they must be restarted at the beginning of the block

or at intermediate points. But first the state must be
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cleared of the effects of the unfinished decoders. This
is acconplished by loading each unfinished track into the
decoder and forcing it to back up a fixed number of nodes
or to the beginning of the track. Decoding then resumes

but with a looser stopping threshold.

3.2.4 Parts Count Estimation

The part count necessary to implement the decoder
has been estimated. The estimate is based on the use of
presently available ECL 10,000 and 9,500 series logic cir-
cuits. The MECL 10139 ROM or equivalent has been assumed
to be available in the near future. The parts count has

been broken down as follows:

{ Memory and Associated Regiéters 170
f Metric Calculation 50
- Metric Testing and Selection 30
State Calculation & Update Logic 15
Track Control Logic 30
Encoder 25
Memory Address Registers 30
Miscellaneous 50
External Buffer 50
TOTAL 450

Table 3.1.1 Approximate I.C. Requirements for
Hybrid Bootstrap Sequential Decoding.

This number of circuits can be packaged on 5-6
circuit boards approximately 8x8 inches in size. Prime
power requirements are approximately 400 watts, assuming

50% power supply efficiency.
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3.2.5 Decoder Computation Rate

The part of the decoder that determines the maximum
computation rate is the branch metric calculation and selec-
tion circuitry shown in Figure 3.2.2, Note that the entire
branch metric computation is done in one computational cycle.
The total delay through this circuitry is approximately
60 nanoseconds including set-up and propagation delays of
the flip-flop registers involved. This is the basis for thLe

15 Megacomputations per second decoding speed forecast.

It is possible to speed up the process by the use of
pipeline techniques; i.e., by doing éart of the metric calcu-
lation on the previous computational cycle. The difficulty
here is that whatever portion of the hardware operates on
the previous cycle must compute branch metrics for three
times as ﬁany nodes. This is because the present compu-
tational cycle may step back or step forward to two different
nodes and symbol metrics have to be provided for all three

possibilities.

The use of MECL III in the symbol metric summers was
considered briefly and rejected in favor of the ECL 10181
arithmetic logic unit. It was found that only a small im-
provement could be made in propagation delay at greatly in-
creased chip count and cost. Actually, the increased size
of the resulting circuit board layout would probably cancel
the smaller propagation delay because of increased wire

length.
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3.3 Other Bootstrap Decoding Techniques

The design of Section 3.2 is based on the best
understood of the bootstrap sequential decoding techniques.
The basic hybrid bootstrap decoding algorithm is well
suited for hardware implementations, but initial simulation
results do not indicate any clear performance improvement
over concatenated convolutional - RS decoding which is

somewhat simpler to implement.

3.3.1 Multiple Processors

Hybrid bootstrap decoding performance could be im-
proved if the speed factor of the sequential decoder could
be effectively increased by factors greater than 2 without
significant cost increments. One approach with potential
promise is utilization of multiple processors. Initial
simulations; discussed by Hofman and Odenwalder 15,
demonstrated a reduction in performance. The problem
appears to reside in the communication problem among the
processors and, in particular, in techniques for revising
state information and recognizing definitely decoded sec-
tions without introducing errors. Each sequential decoder
must be able to accept changes in branch metric assignments
without complete initialization, without looking, and without

significant computational increases. Further work is indi-

cated. t

+ Section 3.3.2 was authored by Dr. F. Jelinek, a consultant
to LINKABIT on this study. He considers application of
bootstrap techniques to Viterbi (trellis) decoding with
long constraint length codes.
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3.3.2 Bootstrap Trellis Decoding

3.3.2.1 Description of Rudimentary Decoder

Let K be the constraint length of a convolutional
code, and let the constraint length of the corresponding
truncated trellis decoder be u<K (i.e., the truncated de-
coder has 2“-l states per level)., We will assume that K
is so large that the probability of error for maximum like-
lihood decoding ..t the signal-to-noise ratio (SNR) used is
negligible compared to the probability of error resulting

from the scheme described below.

The rudimentary Bootstrap Trellis decoding algorithm

is as follows:

1. m-l streams of binary data are encoded using
the K constraint length code, and an mth stream
is created using mod 2 position-by-position addi-

tion of the M-l streams.

2, The m streams are transmitted through the
channel, and the receiver creates an appropriate

state stream as in Boot+strap Sequential Decoding.

3. A p-truncated trellis decoder is used to de-
code the first stream, with metrics based on the
corresponding received and state stream digits.
To each depth of the N-branch codeword there cor-
respond 2L jikelihoods, the maximum of these at

depth n being denoted by Ln.
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Let

SO Lﬁ is a monotone increasing function of re(l,...,N).

M
If Ln

- Ln<T ter all n, the decoder accepts the decoded
first stream information sequence, otherwise it re-
jects it (ir fac+, it will stop decoding after smallest

depth n is searched for which L: - LngT).

4, 1If the 15t stream was accepted, -t is repla.ed by
the estimated transmitted stream, the state stream is
accordingly recalculated, and the decoder proceeds to

nd

decode the 2 stream as in step 3, nsing a metric

table appropriate to m-1 undecoded streams,

5. If the lSt stream was rejected, an stream de-
coding proceeds exactly as in (3) with no change to

either metric or state stream,

6. Steps 3 through 5 establishes a pattern that is
adhered to in general: after every acceptance, the
stace stream and metrics are recalculated and de-

coding of the "round rcuwin" next stream begins.

-

7. Decoding terminates in either of two ways:

a) SUCCESS: all m streams get finally accepted.

b) FAILURE: when & streams, (&<m), remain un-
decoded, & successive attempts at

stream decoding end with rejection,
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3.3.2.2 Anaelytical Perfcrmance Estimates

Using simple arguments, analogous to the r.nes appearing
in the Bootstrap Sequential Decoding paper%Git is possible
to obtain bounds on the probability of DECGDING FAILURE,
P(F;.

Let E (R) be the pr-obability of undetected error
exponent correspcnding to maximum likelihood decoding of the

first of k streams that utilize the received as well as state

strean. digits when the convolutional rate is R (the net rate

taking into account the parity stream degradation is E%l R).
Then )
[ - -
< max min Na_2 VE, (RU k ' NAk2 uEk(R)I
2<k<m L ’
P(F) =
> max max Na, 2 HEx (R)| k Na. 2 HE; (R)
— £ ’ 2
3<k<m ;
(3.3.1)

where A, is a monotonically increasing function of the number
of undecoded streams & that depends on the rate R but varies

negligibly with p. From (3.3.1) it follows that

. 1l .
- = F) < E R 3.
E.p (R) < tiz T log P(F) < Eyp (R) (3.3.2)

where estimates of both exponents are readily available.
In fact, let us assume that the combined expurgated and

random coding bound exponents are the true exponents.



Then

o  if the solution of R = é Eﬁ (0) is o<1
Ek(R) = <
8 if the solution of R= % Ei (B) is B>
Ll otherwise (3.3.3)
where, for the binary input, 2b-ary output symmetrical channel,
and binary state stream,
b . 1 1l  1+o
o e T+o . 1+o
E, (0)=0 109521(“w(0,v]0)qk_1 (0)] +[w(l.v|0)qk_l(l)] : +

- I %1'5}1"")
+{[W(0.v;0)qk_1 (l)] ° +[W(1.V|0) Qg1 (o)]

Above, the channel outputs are pairs (u,v), u € (0,1), vegl,...,b}

and the inputs are x € (0,1). The transmission probability, w(u,v]|x)

is symmetric: w(u,v]x) = w(uel, v|xel)

Furthermore,
k-1
1+(1-2
. () (1-2p)
k-l 2 '
k-1
1-(1-2
(1) (1-2p)
dx-1 2
b
p=L W(llV‘O)
v=



Finally,

b
E;: () =0 -0 log[l + \Zr=1 \’w(o, v/o)w(l,v/o)qk_l(O)qk_l(1)]

Clearly, for (3.3.1) and (3.3.2)

ELB(R) = min max {kE°° (R) » Ek(R)}

2<k<nm

EUB(R) = min {min

k By (R)} v B, (R)}
3£k <n

To obtain parametric relations between ELB(R) and E;g (R) and

R, we may proceed as follows, Define
Eﬁ (a) «sl
Ek(a) =l.
Ee (o) a>1
Then ELB (R) = o for
: +
= 1 in: L , Kk a
R= max ‘a E. (a), mlnid Ek+_1(a) S Ew(E+)}}
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Where

kf = min k :

Finally,
EUS = a for
1,
R = min )E sza)
where

%*
k = min Ln, min{k: k

k> 2,

1
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3.3.2.3 Refincments of the Decoding Algorithm

1. It is not necessary to reject entire stream when

thresheld violated (i.e. at some l,Lf-LRZT). Let k<% be

M
such that Ll = Lk

when threshold violation occurs at depth %, all decoded bits

up to the K--Jth one are accepted, the corresponding state

and let J be an optimized integer. Then

stream digits are recalculated, and on subsequent attempts
the appropriate metr.cs are used. The next decoding of that

stream then starts at position k-J, rather than at position 1.

This pull-up strategy will occasionally iantroduce
errors into the accepted stream sections, so an error-
cleanup method must also be agreed on. There is further-
more the problem that J should probably increase with u,

but this may not be serious in the "reasonable" range u<10.

2. If the pull-up strategy of (1) is used, then at the
end of the first m attempts, the length of the definitely de-

coded sections will have a monotone increasing tendency, e.g.:

For this reason it might be useful to modify the round

robin strategy by next decoding backwards starting with the
last not fully accepted stream and continuing with the next-
to-last stream, etc. After recoding the first stream in this

manner, decoding would start again in the forward direction, etc.
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Unlike a trué maximum likelihood decoder, a truncated decoder
is not symmetrical in both directions. Therefore, backward
decodino might avoid some errors coded in the forward direction
and vice versa. The code should be picked so it is strong in
both directions.
3. More complex algebraic codes ought to be considered,such as
the three group code.
4., A decoding failure does not mean that the entire block
must be thrown away. In fact, in the definetely decoded
sections there will probably be no errors whatever. When
FATILURE takes pblace, one should probanly go one more round,
ignoring the threshold stopping rule and decoding each stream
to its end, simply accepting the admittedly unreliable decoder
decisions. With a systematic or quick-lookin code, one might re-
construct the unreliable positions simply from the uncoded re-
ceived information bits. |
5. The final stopping rule that would minimize the probability
of error in the pull up mode (1) would be that failure results
when further decoding results in no enlargement of definitely
accepted stream sections.

Alternately, it might be desirable to fix the number of
allowed decoding attempts on each track, perform these,
and accept the last decisions regardless of whether additional
progress was being made or not. This approval might be
particularly useful if several truncated decoders working in
parallel would be available. As one possibility, say 3 sets

of m decoders would work continuously on 3 successive

received blocks as follows:
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the iEEstate \
stream inform-
ation is updated
according to the
degisions of the /.
20 decoder set.

“the (i’+ l)th state

stream information

" is updated according

to the decoding de-
cisions of the first

‘decoder set.

_.//t \
third set of decoders Second set 0
works indep. on the the (i + 1)~

ith block, using
side informatiga
developed by 2
decoder set.
Decisions are
released as

final to the user.

first set of dggoders

works on i + 2 block
independently, using the
state stream, but each
assuming that m streams are
undecoded at all depths.

decoders works on
. leck independently,

but using all side, information

provided by the 1

g8

5t set of decoders.



6. One way to avoid rejection is to increase the truncated
constraint length p. Thus, for example, in the rudimentary
decoding algorithm of section I, one would have a sequence

ul<u2<... <u2 of constraint lengths.

Starting with constraint length ul,decoding of a block would
be attempted? until either a SUCCESS or a FAILURE was declared.
In the latter case, decoding would begin again based on cons-
traint length My and would continue until either a new stream
was accepted, or another FAILURE resulted. In the former case,
decoders would revert to constraint length Myé in the latter
case constraint length would be increased to M3, etc. FAILURE

with constraint length Mys would be final.

This game could be played in a variety of ways. Another
possibility is to have a sequence of constraint lengths
MpSHaS oeo Su (m is the number of streams). Constraint
length Mo is used until one stream is accepted or FAILURE is
declared. In the former case, constraint length'y _, will

be used until another stream is accepted or FAILURE is de-

clared.

7. It is not clear that the pull-up strategy of (1) is in
the non-asymptiotic case more desirable than the rudimentary
one. Indeed, it may be much simpler to shorten the stream

length N and use the latter strategy.
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8. The final possibility is to bootstrap on a concatenated
code. To stay simple, suppose an R-S code is used over GF (8)
that is single error correcting (not realistic, of course).

The algebraic rate then is %.

Form 5 information streams and add 2 parity check streams
using the R-S relation. Next encode each of the streams by use
of rate 1/2 convolutional code that has eight 6-bit branches
leaving each node. The matrix of the convolutional code will

have the partitioned form (K = 6 in this example):

GO O 0 0
Gl O 0 0
G2 GO O 0
G3 Gl O 0
G4 G2 GO O
G5 G3 Gl O
0 G4 G2 G

0 G5 G3 Gl

G4 G2

G5 G3

G4

G5

Here Gi are 3 x 3 binary metrics that are restricted to have

the forms
000
_ ) 000
001]n 000
or {011 r = 1,2,..., 7
111
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In this way Gi's are representations of the powers of the prim-
itive element over GF(8). It can be shown that the restriction
does r.ot damage the error correcting capabilities of the code,
at least not in the limit of large constraint lengths, K>>1.

If a convolutional code of the indicated form is used, then
it can easily be shown that the corresponding branch triplets

of the 7 streams will have the R-S relationship. 1In fact, if we

number the digits as indicated,

1 2 3
4 5 6
7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

they will satisfy the parity check Matrix

110 010 010 100 110 100 OULO
111 101 101 010 111 010 o000
010 011 011 001 010 001 000
000 110 010 010 100 110 100
000 111 101 101 010 111 o010
000 010 011 011 001 010 o001
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Consequently, sets of these digits will be algebraically related,
and thus bootstrapping will be possible. If the bootstrapping
is to be simple, individual bits in the triplets should get in-

dependent metrics. This is not rigorously possible, but from a

practical point of view it may be enough to provide three separate
parity check equations, each involving only one digit of the

triplet. For digits 1,2,3 and parity checks are

100 001 001 101 100 101 00O
010 100 110 100 000 1110 o010
001 001 101 100 101 000 100

It would seem poss.ple to keep state information for each 1ligit
according to .its parity block set and then perform ordinary sincie
parity bootstrapping. After the decoding of all streams is com-
pleted, the R-S code can be used to correct remaining errors in
the estimated information streams. Of course, the H-Matrix con-
tains the possibilities for 3-group codes, and even more compli-

cated ones, all of which might be worth investigating.
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4.0 Conclusicns and Recommendations

Tables 1.0.1, 2.5.1, and 3.1.1 summarize the conplexity
of the concatenated and hybrid coding systems studied. It
appears that the concatenated system is more cost effective
for approximately the same performance as the hybrid systems.
Its only drawback lies in the interleaving requirements which
increase koth the decoding delay and the gaps of non-data
(mostly parity-check bits) by over an order of magnitude
relative to the hybrid system. On the other hand, these
probably are not a detriment for time-division multiplexed
users, and for systems where this is a problem, staggered
interleaving will reduce the gap lengths to those of the

hybrid system, possibly at a small cost in decoder complexity.

It is therefore our conclusion that a con.aten~ted
coding system utilizing a rate 1/3, constraint .length-8,
inner convolutional coder-Viterbi decoder, a 2048-bit Reed-
Solomon outer block coder-decoder, and 16 words of inter-
leaving, operating at 100 Kbps data rates is implementable
in its entirety by a system emplcoying approximately 333 TTL

=7 for this

integrated circuits. The coding gain at Py = 10
system is over 9dB. Hybrid bootstriap sequential decoding
would require on the order of 50% more integrated circuitis
of the ECL-MSI (such as MECL 10,000) icgic family. Further-
more, the performance of the latter would vary with data

rate, being slightly superior (0.2dB) &t 10 Kbps bit and

somewhat inferior (1.0 dB) at 100 Kbps.
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It shculd also be emphasized that the simulations of
the hybr .otstrap system are not coipletely conclusive,
and hence the technical risk is much greater in this system.
Among its principal weaknesses are its sensitivity to AGC
inaccuracy and phase tracking errors, which has been shown
(Ref. 8) to be considerable even for ordinary sequential
decoding. In concatenated decoding, on the other hand,
these channel inaccuracies produce a moderate known degra-
dation (Ref. 8) on the inner Viterbi decoder, which are
easily shown to reflect directly and in almost the same

amount on the overall coding scheme.

Otherwise the performince of the two seemingly
radically differen! approaches are remarkably similar.
The basic reaso: °n retrospect, is that, as information
theory esﬁablishes, highlv efficient communication over a’
Ga.issian charnel requires extremely lorng block lengths.
The hybrid and concatenated systems considered here nti-
lize about the same "superblock" length - 2 to 3 Kbits -
with highly efficient convolutional and bhlock codes -

hence the similar performance.

One final advantage of implementing a concatenated
scnemme is the essentially individual and self-justifying
nature of each portion of the system. Viterbi decoders at
thesc data rates exist already (albesit only for the less
powerful K=7, R=1/2 code and not for the K=8, R=1/3) and
could be inserted without procurement delay as the inrer

decoders.
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The outer Rced-Solomon coder-decoder could be easily
justified as a worthwhile development in its own right, since
such a powerful (255 characters over GF(28) with 16- error-
correction capability) decoder has never been implemented in
hardware. Finally, even the relatively straightforward
interleaver could be justified by itself as a means of breaking
up burst errors in convolutional decoding. Thus, such a de-
velopment would produce multi-purpcse components as well as
an integrated system which might once and for all conclude

the quest for the ultimate coding system for space communi-

cacions.
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Apvendix A

This appendix contains a Fortran and an assembly
language version of a partial R-S decoder program. Nor-

mally the inputs to this program are:

1. J = the number of bits per R-7 symbol.

2. E = the designed number of correctable errors.

3. The coefficienrts of the J-degree primitive
polynomial of a field element which generates
the fieid.

4. The 2E syndromes represented as integers.

However, to avoid computing thz syndromes by hand,
a Zew additional stateme' cs were added at the beginning
of the program to enab'l:¢ the computer to determine these
quantities from the error locatiocns and error values.
Of course, in a real system the syndromes would be com-
puted from the received word. But the method used here
is more convenient in checking and timing the various
steps in the decoding operation. The program outputs are

the error locations and the error values.

The Fortran version of this program contaius numerous
comment cards describing the various steps in the program.
The assembly language version follows the same format as
the Fortran version. In addition to the basic IBM 1130

assembly language instructions, a few instructions unique
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to the LINKABIT system have been used. A brief description

of these instructions is given in Table A.l.

Following Table A.l is a listing of first the For-

tran and then the assembly language version of this program.
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The following pages give the assembly languace
version of the preceding program. ' It is organized so
that the input and output statements are in Fortran and
the rest of the program is in an assembly language sub-

program.
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